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NEW TIME-VARYING SLIDING SURFACES FOR ROBUST VARIABLE
STRUCTURE CONTROL SYSTEMS

Seung-Bok Choi* and Dong-Won Park*
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Most of sliding surfaces proposed so far for a variable structure control system(VSCS) have been determined independently of
given initial conditions. The VSCS with these typical surfaces may be sensitive to paramter variations and extraneous disturbances
during the reaching phase. To overcome this drawback, we propose a new tiine-varying sliding surface. The surface is initially
designed to pass arbitrarily given initial conditions, and subsequently moved towards a predetermined sliding surface by rotating
or/and shifting. The existence of sliding mode with the time-varying surface is proved, and moving procedures are presented as
well as salient features. Using the proposed surface a low sensitivity system is obtained through shortening the reaching phase.
Furthermore, the system robustness is almost guaranteed during whole intervals of control action by eliminating the reaching
phase. To illustrate the advantages of the proposed method, a simple second-order linear system subjected to external disturbance
is considered as preliminary example followed by a two-link manipulator.
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1. INTRODUCTION

The problem of controlling uncertain dynamical systems
subjected to extraneous disturbances has been studied for a
long time. One deterministic approach to this problem is by
means of a variable structure control system(VSCS). The
VSCS is a special class of nonlinear control mechanism
characterized by a discontinuous control action which
changes the structure upon reaching a set of sliding surfaces
(Utkin, 1978). The most important property of the VSCS is
that the sliding motion of the state on the sliding surface is
ensured. During the sliding motion, the system has invariance
properties yielding motion which is independent of certain
system variations and disturbances. The representative point
of the system is constrained to move along a predetermined
sliding surface (Itkis, 1976). Therefore, the design of the
sliding surface completely determines the performance of the
system.

Most of sliding surfaces proposed so far have been designed
without consideration of given initial conditions. Using these
surfaces, the sliding mode occurs only after the system
reaches to the surfaces. Therefore, the VSCS may be sensi-
tive to parameter variations and disturbances during the
reaching phase. Furthermore, it is also known that the con-
vergence to the surfaces may only be asymptotic, so that the
benefits of the VSCS cannot be realized. When in the sliding
mode, the system is completely insensitive to certain values
of uncertain quantities if some invariance conditions are
satisfied ; that is, the disturbances and parameter variations
will only affect the initial conditions of the sliding mode
equations (Drazenovic, 1969, Spurgeon, 1991). Hence, the
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robustness of the VSCS can be improved by shortening the
time required to attain the sliding mode, or may be guaran-
teed during whole intervals of control action by eliminating
the reaching phase. One easy way to minimize the reaching
phase is to employ the larger control input. Young et al.(1977)
used the high-gain feedback to speed up the reaching phase.
However, this may cause extreme sensitivity to unmodelled
dynamics, and also higher chattering which is undesirable in
physical system. On the other hand, Slotine and Sastry(1983)
suggested a sliding surface in the state space in order to
eliminate the reaching phase by imposing a constraint that
the initial errors be zero in tracking control. However, this
situation is not general but strictly special. Typically the
initial conditions of actual system may be located arbitrarily.

Up to now, researches on this problem considerably rare
while numerous works on the VSCS seriously point out the
drawback. In this paper, to remove the drawback a new
sliding surface adaptable to arbitrary initial conditions is
proposed. The surface is initially designed to pass given
initial conditions and subsequently moved towards a
predetermined sliding surface by rotating or/and shifting. We
call it as a time-varying sliding surface comparing with
conventional ones, for instances, employed by Choi and
Jayasuriya(1987), Hong and Wu(1989), and Spurgeon(1991).
Using the proposed surface, the system sensitivity to uncer-
tainties is remarkably lessened through shortening the reach-
ing phase. Furthermore, the robustness of the VSCS is guar-
anteed during whole periods of control action by almost
eliminating the reaching phase with trade-off against regulat-
ing or tracking time.

To recall the sensitivity of the VSCS during the reaching
phase, we take a simple single-input linear system as an
illustrative example in Section 2. In Section 3, we introduce
the time-varying sliding surface for a second-order VSCS by
dividing it into two types-the surface with time-varying
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slope, and with time-varying intercept. Moving procedures of
each one are described in details as well as its salient fea-
tures. And the existence of sliding mode with the time-
varying surface is proved. In Section 4, we apply the surface
to the control of a two-link manipulator to demonstrate some
advantages of the proposed method. To our knowledge, these
are novel results in the research community of the VSCS.

2. SENSITIVITY OF THE VSCS

Consider the system given by the set of (n) differential
first-order equations.

Wt)=A o) +B uwt)+D fit) 1)
where x(¢) € R”, u(t) € R™ and f{?) ¢ R are the state, control
and disturbance vectors, respectively, and A, B and D are (nx
n), (nXm) and (n X p) constant matrices. Define a set of sliding
surfaces as

S=C xt) 2)
where C is constant (m X n) matrix and det (CB)#0. Then, the
state of the system during the sliding mode is constrained to
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the subspace defined by the equation

C x()=0 (3)
Differentiating (3) with respect to time and substituting from
(1) yields following equivalent control ., in a unique manner.

#ee=—(CB)™' C (A x()+D f1t)) 4
Thus, the resultant sliding mode equations are obtained as
follows.

%(t)=[1—-B(CB)'C][A x()+D ft)] (5)

C x(t)=0
where [ is the unity matrix. It is seen from this equation that
the disturbances f{¢), in general, act in equations of the sliding
mode motion. The conditions for the sliding mode system (5)
to be completely insensitive to the external disturbances f#)
are well known (Drazenovic, 1969), i.e.

rank[B : D] =rank B 6)
where [B : D] is a matrix composed of all the columns of B
and D. Though if it is possible to satisfy some conditions
dependent on matrices which define the control function and
disturbance points to the system, the sliding mode motion will
depend upon the disturbances through the given initial condi-
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Fig. 1 Effect of the sinusoidal disturbance on the VSCS
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tions. Hence, if the preliminary part of the motion is short-
ened by a suitable choice of control function or other means,
the time of disturbance influence can be remarkably de-
creased, so that the whole system exhibits a low sensitivity to
distrubances.

To recall the sensitivity of the VSCS during the reaching
phase, we consider typical second-order linear system de-
scribed by

0t)=x)

L) =ax(t)+ axt)+ but)+ dt) (7)

xh) =%
where a,, a, and b(#0) are known constants. In Eq. (7), x, are
initial conditions given at initial time £ and d(#) is unknown
but possibly bounded external disturbance as |d(¢)|<d.
Defining a typical sliding surface (a line in this case)

sx)=cxi+x, >0 (8)
yields the discontinuous control in view of (4)
ut)=—[ax+Cc+a)ut+k sgn(sx)]/b (9

where £ might be any positive number satisfying %4> d. Then
the sliding condition for existence of sliding mode motion of
the system (7)

sx) $(x)<0, for x e R*—s(x) (10)

can be satisfied. In sliding motion s(x) remains zero, and thus
the resultant equation of the sliding mode becomes
sx)=cxn+x%=0 (11)
It is obvious that the response of the system (11) depends
only on the constant parameter ¢, hence providing the invar-
iancy of the sliding mode with respect to the disturbance. The
invariancy property is justified from the fulfillment of the
invariance condition (6) for the canonical form of (7). The
system (7) with the controller (9), however, may be sensitive
to the disturbance when the system does not reach the sliding
surface as shown in Fig. 1. For the simulation, the following
values are employed: &, =3, &z=—1, b=2, ¢=3, k=5, d{$)=
3sin(3xz¢) and (x(0), x(0))=(2.0). In Fig. 1, ¢, denotes the
reaching time of the representative point taken from initial
conditions to the surface. We clearly observe that after
beginning of the sliding mode the specific sinusoidal distor-
tions vanished. However, the imposed disturbance delays the
starting moment of the sliding mode resulting in considerable
change of the sliding mode initial conditions. It is also obser-
ved that the control input signal is affected by the disturbance
during the reaching phase. One possibility of shortening the
reaching time, thus lessening the disturbance influence is to
increase the magnitude of the discontinuous control gain k as
shown in Fig. 1(d). This, however, may cause extreme system
sensitivity to unmodelled dynamics, actuator saturation and
undesirable higher chattering as well. In the present work, we
improve the robustness of the system without increasing the
gain of £ by introducing a new time-varying sliding surface.

3. TIME-VARYING SLIDING SURFACE

As mentioned in introduction, the basic philosophy of the
time-varying sliding surface is that the surface is initially
chosen to pass given arbitrary initial conditions, and we
subsequently move the surface towards the predetermined
sliding surface. The movement can be executed by rotating
or/and shifting. Thus, we divide the time-varying surface into
two types:the surface with time-varying slope and with
time-varying intercept. The movement for the former is

associated with time-varying slope of the surface which
belongs to a step function to be defined below. On the other
hand, the movement for the latter is accomplished by employ-
ing time-varying intercept of the surface which also belongs
to a step function.

Definition 1: A function ¢ : R—R defined on [a, &] is
called a step function if there is a partition given by a=u <
Up < reevee <uy,=b, such that ¢ is constant on each open
subinterval (ve-1, vi), 1<E<n.

3.1 Surface with Time-Varying Slope

For the second-order system (7), let us define the sliding
surface as

e (x(t), t)=c, u(D)+x() (12)

Sy (e(h), k) =Sr=crn x(h)+x()
We obviously see that the surface initially goes through given
initial conditions x(4) with the corresponding slope c,. In
other words, the representative point(RP) initially lies on the
surface s, as shown in Fig. 2(a). In this figure, s, represents
the predetermined sliding surface defined by s,=cox(#)+ x2
(¢). Before describing a moving algorithm, we summarize the
argument for existence of sliding mode in a following theo-
rem.

Theorem 1 :If ¢,(¢) in Eq. (12) is chosen to be a step
function for ¢ € [4, ¢,] with terminal values of c¢,(4)=—x;
(6)/x: () and ¢-(¢,)= cp, and c,(¢) be a constant function when
t e (¢, o) with ¢,(¢)=c;p, the system (7) with controller (9)
incorporating the sliding surface (12) satisfies sliding condi-
tion s,{x, t) s-(x, t)<0 almost everwhere.

Proof : From definition 1, there exists a partition P={u,
Vg, oo y Unty 1.6, =1 <vp <l ovees <wvn=1, such that ¢(t) is
constant on each open subinterval (v._,, v), 1 <£<n. Trivial-
ly, P is a finite set. So we can prove that P is measurable and
m(P)=mP)=0 (see Cohn, 1980), where » denotes Lebesgue
measure and m. stands for Lebesgue exterior measure.
Therefore, since we chose ¢,(¢) to be a step function on [,
t], ¢At)=0"1for t € (&, ty)—P and ¢é.()=0 for ¢ eltr, o).
Hence the control system (7) and (9) with the sliding surface
(12) obviously satisfies sliding condition : when ¢ € {4, t-], s»
(x, t) §.(x, t)<O0for x e R®—s,, t € [#, t,)]— P and when ¢ €
(¢, ), s,;(x, 1) §.(x, t)<0 for x € R®—s,. This completes the
proof.

Now we can move the sliding surface s, to the s, by
employing time-varying slope c¢,(¢) without violating the
sliding condition almost everywhere. The moving algorithm
proposed in this study may be outlined as follows.

Step 1.

We determine an appropriate constant 4, required to
rotate the surface and define (refer to Fig. 2(b)) 4,,= 4+ 4.,
where 4, denotes the vicinity magnitude of the surface due to
nonidealities such as delay, hysteresis and etc. The value of
4. plays a crucial role for improving the the robustness of the
system. The smaller value of 4., the shorter reaching time,
hence resulting in low system sensitivity(see step 4), If 4,
approaches to zero, the RP may cross the sliding surface. In
other words, the reaching phase may be almost eliminated
resulting in the enhancement of the system robustness with
trade-off against regulating or tracking time.

Step 2.

We calculate the initial slope ¢, satisfying the equation
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Fig. 2 Surface with time-varying slope
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sro=0 according to given initial conditions x(4&) ; crn=—x
(6)/x:(h).

Step 3.

The rotating direction is determined from the values of ¢,
and c¢p, ie., if co<cp;clockwise(CW), and if cpo>cp;
counter-clockwise(CCW).

Step 4.

We instantaneously rotate the s,, to s, which has the slope
cn obtained by solving the equation |cnxi(t)+ x(f)|=4.
The larger value of two solutions of ¢, is chosen as the slope
for clockwise, and the other for counter-clockwise. The sur-
face s, stays for a finite time (we call it as the dwelling time
(47r) of the surface) before moving to the next surface s,
whose slope ¢, is obtained by solving the equation | c.x
(t)+x:(t) | =d,r, where = t,+dr. We know that the dwell-
ing time 4z also plays a crucial role as the 4, for the system
performance. The shorter dwelling time 4z, the shorter rea-
ching time ¢,. If the 47 is chosen to be long, the RP may cross
the sliding surface. Then the control input signal which has
opposite sign is activated to drive the RP to the opposite
direction resulting in sluggish motion. However, with trade-
off against regulating or tracking time the system robustness
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may be guaranteed during whole intervals of control action.
The rotating is continuously performed in a same manner
until following step is checked.

Step 5.

We stop the rotating under following condition, i.e., if ¢,,>
cpy then fix c(t)=c,: CW, and if ¢,n<cp, then fix c(t)=cp:
CCW. The slope ¢~ is obtained by solving the equation

| cmxi(te1) +x2(tar) | =4dsr, where tooi=t+(n—1)dr,

This algorithm is now applied to the system (7). Fig. 3
shows control responses obtained using the controller (9) in
which the surface (8) is replaced by the proposed surface (12).
Same values of @, @, b, &, d(t) and x(4) as those used for Fig.
1 are employed. The values of ¢,, 4, and 4, are chosen as 3,
0.01, and 0.01, respectively, and the dwelling time 4z is chosen
to be 0.001 second. From the phase portrait, we clearly know
that the reaching time ¢, in the presence of the disturbance is
significantly reduced by employing the surface (12) compar-
ing with conventional one (the surface defined by the Eq. (8)).
This improvement of the system robustness without increas-
ing the gain £, hence undesirable chattering will furnish lots
more benefits in practice. It is observed from the surface
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Fig. 4 Control responses with the sliding surface (12) (dwelling time=0.01 sec)
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trajectory that the RP never crosses the surface during the
reaching phase. The chattering magnitude of the surface
during the reaching phase is due to the imposed dwelling time
Adz. The longer 4z, the larger magnitude. It is noted that the
chattering in this phase does not cause discontinuities of the
control signals as shown in Fig. 3(c). From the magnification
(20 times) of ¢(¢) in Fig. 3(d), we observe that the time-varying
slope ¢(¢) indeed falls into the step function.

Fig. 4 presents control responses of the system (7) obtained
imposing the dweiling time 47 =0.01 second instead of 0.001
second in Fig. 3. It is clearly observed from the phase portrait
that the sinusoidal distortion due to the disturhance is almost
vanished during whole periods of control action with trade-
off against the reaching time ¢,. From the surface trajec-
tories, we observe that the RP crosses the sliding surface
from the beginning, and thus, improving the system robust-
ness. We may say that there is no reaching phase in this case
except changing time of the slope. It is noted that the impos-
ing of longer dwelling time might be very useful to the system
subjected to high magnitudes of uncertainties, which can
possibly cause a catastrophe all of a sudden.

One can naturally ask how about the initial conditions are
located in the unstable zone, i.e., the first and third quadrants
in the above example. If we define the sliding surface to go
through the initial conditions and the origin as well, the
surface itself is unstable. Therefore, it is no doubt that the RP
on the sliding surface goes away from the origin until it
arrives to stable zone. From the mathematical point of view,
though it is possible to drive the RP to the origin in a finite
time by employing the surface (12), this may cause much
longer reaching time ¢ than the conventional one. To avoid
this problem we propose following sliding surface.

3.2 Surface with Time-Varying Intercept
We define the sliding surface for the system (7) as

sstx(t), t) =cpu(t) + (1) — a(t)

ss(x(lo), fo) = S0 = Coi (ko) + 2%2(h) — o (13)
where ¢, is the slope of the predetermined sliding surface s,.
and a(¢) is the time-varying intercept of the x, axis. The
surface initially goes through given initial conditions with
appropriate initial intercept @, as shown in Fig. 5(a). Similar
to the surface (12), we obtain following theorem regarding to
the existence of sliding mode with the sliding surface (13).

Theorem 2 : If a(¢) in Eq. (13) is chosen to be a step func-
tion for ¢ €[4, t-] with terminal values of a(t)=x:(t)+ cpx:
(%) and a(t,)=0, and a(¢) be a constant function when ¢ €
(¢, o0) with a(¢)=0, the system (7) with controller (9)
incorporating the sliding surface (13) satisfies sliding condi-
tion ss(x, ¢) §s(x, #)<0 almost everwhere.

The proof can be easily completed similar to the proof of
theorem 1. The movement is performed by calculating up-
dated intercept a(¢) until the surface s, becomes to the s,.
The algorithm to move the sy to the s, is outlined as follows.

Step 1.

We determine an appropriate constant 4 required to shift
the surface and define (refer to Fig. 5(4)) dss=d,+ ds.

Step 2.

We calculate the initial intercept a, satisfying the equation
s =0 according to given initial conditions x(&); a0 = crta
(ﬁ))*‘Xz(&)).

/

(a) Configuration

(b) Mechanism
Fig. 5 Surface with time-varying intercept

Step 3.

The shifting direction is determined from the value of a, i.
e, if @ >0 ; upward, and if o, <0 ; downward.

Step 4.

The surface sy is immediately shifted to the sy which has
the intercept of @, obtained by solving the equation | cpu
() +x2(te)— @ | = dys. The larger value of two solutions of &
is chosen as the intercept for upward, and the other for
downward. The surface s; stays for a finite time (4z) before
shifting to the next surface s, whose intercept «, is obtained
by solving the equation | cpxi(4)+x(h)—a | =4y, where
4 = t, + dr. The shifting is continuously undertaken in a same
manner until following step is checked.

Step 5.

We stop the shifting under following condition, i.e., if @,>
0, then fix a(#)=0 ; upward, and if @,<0, then fix a(¢)=
0 ; downward. The intercept a, is obtained by solving the
equation | cpxi(tao)+2x2(tn-1)—an | =4y, Where toi=t+
(n—1)4z.
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Fig. 6 shows control responses of the system (7) obtained
using the controller (9) in which the proposed surface (13) is y
employed instead of the surface (8). Same values of ai, a,, b,

k, d(t) and 4; as those used for Fig. 3 are employed, and

initial conditions of (x(&), x:(4%)) =(1, 2) are imposed. The

value of 4 is chosen as 0.004. We clearly know that the

surface trajectory is absolutely different from conventional

one. Furthermore, using the proposed surface the robustness \62
of the system can be obtained in a different sense by imposing
longer dwelling time At as shown in Fig. 6(b). The sinusoidal
distortion due to the disturbance is almost vanished during
whole intervals of control action.

From the intuition, we may combine the surface (12) and
(13) to get better result in the sense of reducing the reaching
time as well as increasing the robustness. For instance, if the
initial conditions are located in the unstable zone, the surface
(13) is used until the RP moves to the stable zone, and subse-
quently the surface (12) is employed throughout. Consequent-
ly, we may define the time-varying sliding surface as

Snl0(t), 1) = c(O () + () — a(t)

—

Fig. 8 A two-link manipulator
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The intercept a(¢#)=0 for the surface (12) and the slope ¢(?) =
¢» for the surface (13). Fig. 7 presents control responses of the
system (7) obtained using the surface (14). All parameters are
same as those for Fig. 6(a). We clearly observe that the
reaching time ¢, is shortened by comparing with one shown in
Fig. 6(a). From the surface trajectory, we easily know that
the surface (13) with 4,=0.004 is executed first followed by
the surface (12) with 4,=0.01. In general, we start the move-
ment (shifting or rotating) according to the location of initial
conditions. In the subsequent section, we apply the surface
(14) to the control of a two-link manipulator.

4. APPLICATION TO A TWO-LINK
MANIPULATOR

To show the effectiveness of the proposed method we apply
the time-varying surface (14) to the control of a two-link
manipulator shown in Fig. 8. By assuming normalized unit
mass and unit length of the arm the dynamic equations are
obtained as follows(Slotine and Sastry, 1983).

4. =1[2/3sin 6,6 (26, + 6,) + (2/3+cos 6,)sinb, 6,>+T,]/

(16/9—cos *6.) + di(¢t)
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6, = [—(2/34cos 8)sin 6, 6,(26,+ 6,) —2(5/3+cos 6.)

sin 192 512+T2]/(16/9_COS 262)+dz(t) (15)
where 4, () and d&(¢) are unknown but bounded external
torque disturbances. The control problem is to regulate the
angles (4,(¢), 6,(¢) to a desired configuration (8,4, 6.). Thus
the control torques T, and T, should be determined to
undergo that the trajectory error is to be zero asymptotically
for any given initial conditions. Accordingly, in view of (14)
we define the time-varying sliding surfaces as

Smit) = c.()6:(1) ~ B4:) + (9z(t) - 9«1«‘)‘— ai(t)

Smille) = clto )(B.(t) — 64:) + (B:(t,) — 64) — ailts), 1=1, 2 (16)
Though the control problem is a multi-input case, it is treated
as m single-input problems;the i-th sliding surface su;
depends only upon 6,(¢). Hence, from the concept of equiva-
lent control given in Eq. (4) the discontinuous control laws to
satisfy the sliding condition

Smi(t)$ mit) <O an
can be obtained as follows.
T,=—2/3 sin 6,6,(26,+ 6,) — (2/3+cos 6;)sin 6, 6,*
+(16/9—cos 26,) (“ Cl(t).al _fhsgn(Smi(t)))
T,=(2/3+cos 6:)sin 6,0,(26,+ 6,) +2(5/3+cos 6,)
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(d) Variation of c,(¢)

Fig. 10 Phase portraits and variations of the slopes
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sin 6, 6,4 (16 /9—cos 26,) (— ¢, (1) 6, — kosgn (Sma(t)))
(18)
For the simulation, following numerical values are em-
ployed ; 4,=0.01, 4,==0.008, 4,=0.005, 47 =0.001 second, 4 =
kz :30, Cpl = Cp2 :50, d1<t) =dz(t):25 Sin (375 f), (01 (0) N 01
(0), 8,(0), 6,(0)) = (0°, —20 deg/sec, 0°, odeg/sec) and (6., 6
a2) = (60°% 80°%. Fig. 9 presents the angle trajectory of 8.(t)
and the corresponding control torque of T.. In this figure, the
conventional sliding surface is defined by
Sit)=c;(8:(t) —84) + ( éi(t) - édz), i=1,2 (19)
where the value of constant slope ¢; is chosen as 5.0 for i=1,
2. It is noted that the surfaces (19) are exactly same as ones
used by Slotine and Sastry(1983). We clearly observe that the
proposed method considerably improves the robustness of the
system (15) by shortening the reaching phase without increas-
ing the undesirable chattering magnitude of control torques.
The sinusoidal distortions of the trajectories due to the
disturbances are also remarkably reduced. It is noted that we
can approximate the discontinuous control torques by contin-
uous ones inside the boundary layer. Fig. 10 shows corre-
sponding phase portraits in the error space and the variation
of the slope ¢(t). The error ¢, and ¢, is defined by (6,(¢)— 8
) and (6.(¢)— 6y,), respectively. From the variation of the c,
(t), we know that the surface s..(¢) is firstly shifted and after
rotated until the ¢ (#) becomes equal to ¢, (=5). On the other
hand, the movement of the surface sn(¢) is executed by only
rotating through whole moving intervals. The execution of
the movement depends upon the location of given initial
conditions, The time-varying sliding surface sn:{(¢) in the
multi-input system is treated as the single-input case ; the i-th
sliding surface moves independently. Without lose of general-
ity, the proposed surface could be extended to path control
problem. Simulation results presented in this work are quite
self-explanatory justifying that the proposed method is very
effective for improving the robustness of the system subjected
to disturbances.

5. CONCLUSIONS

The new type of time-varying sliding surface has been
proposed to improve the robustness of the VSCS. The surface
was designed first to pass given initial conditions and subse-
quently move towards the predetermined sliding surface by

rotating or/and shifting. Employing the proposed surface, it
was possible to remarkably lessen the system sensitivity to
extraneous distrubances by means of shortening the reaching
phase without increasing undesirable chattering of the con-
trol input signals. Furthermore, reaching phase was almost
eliminated by increasing the dwelling time of the surface,
hence guaranteeing the system robustness during whole inter-
vals of control action. It has been shown that the proposed
method could be applied to both single-input and multi-input
systems. In multi-input systems, each sliding surface moves
independently according to given initial conditions. However,
certainly the present work is only first step in developing the
proposed method for general classes of linear and nonlinear
systems. For instance, a logical method to determine the
values of ¢(#) and a(¢) for higher-order systems is yet to be
studied.
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